Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Viruses ; 16(3)2024 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-38543786

RESUMO

Influenza A viruses (IAVs) possess a segmented genome consisting of eight viral RNAs (vRNAs) associated with multiple copies of viral nucleoprotein (NP) and a viral polymerase complex. Despite the crucial role of RNA structure in IAV replication, the impact of NP binding on vRNA structure is not well understood. In this study, we employed SHAPE chemical probing to compare the structure of NS and M vRNAs of WSN IAV in various states: before the addition of NP, in complex with NP, and after the removal of NP. Comparison of the RNA structures before the addition of NP and after its removal reveals that NP, while introducing limited changes, remodels local structures in both vRNAs and long-range interactions in the NS vRNA, suggesting a potentially biologically relevant RNA chaperone activity. In contrast, NP significantly alters the structure of vRNAs in vRNA/NP complexes, though incorporating experimental data into RNA secondary structure prediction proved challenging. Finally, our results suggest that NP not only binds single-stranded RNA but also helices with interruptions, such as bulges or small internal loops, with a preference for G-poor and C/U-rich regions.


Assuntos
Vírus da Influenza A , Proteínas do Nucleocapsídeo , Vírus da Influenza A/genética , Vírus da Influenza A/metabolismo , Nucleoproteínas/metabolismo , RNA Viral/metabolismo , Genômica
2.
mBio ; 14(1): e0297322, 2023 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-36602307

RESUMO

Gelsolin (GSN) is a structural actin-binding protein that is known to affect actin dynamics in the cell. Using mass spectrometry, we identified GSN as a novel Vpr-interacting protein. Endogenous GSN protein was expressed at detectable levels in monocyte-derived macrophages (MDM) and in THP-1 cells, but it was undetectable at the protein level in other cell lines tested. The HIV-1 infection of MDM was associated with a reduction in GSN steady-state levels, presumably due to the Vpr-induced degradation of GSN. Indeed, the coexpression of GSN and Viral protein R (Vpr) in transiently transfected HEK293T cells resulted in the Vpr-dependent proteasomal degradation of GSN. This effect was observed for Vprs from multiple virus isolates. The overexpression of GSN in HEK293T cells had no effect on Gag expression or particle release, but it reduced the expression and packaging of the HIV-1 envelope (Env) glycoprotein and reduced viral infectivity. An analysis of the HIV-1 splicing patterns did not reveal any GSN-dependent differences, suggesting that the effect of GSN on Env expression was regulated at a posttranscriptional level. Indeed, the treatment of transfected cells with lysosomal inhibitors reversed the effect of GSN on Env stability, suggesting that GSN reduced Env expression via enhanced lysosomal degradation. Our data identify GSN as a macrophage-specific host antiviral factor that reduces the expression of HIV-1 Env. IMPORTANCE Despite dramatic progress in drug therapies, HIV-1 infection remains an incurable disease that affects millions of people worldwide. The virus establishes long-lasting reservoirs that are resistant to currently available drug treatments and allow the virus to rebound whenever drug therapy is interrupted. Macrophages are long-lived cells that are relatively insensitive to HIV-1-induced cytopathicity and thus could contribute to the viral reservoir. Here, we identified a novel host factor, gelsolin, that is expressed at high levels in macrophages and inhibits viral infectivity by modulating the expression of the HIV-1 Env glycoprotein, which is critical in the spread of an HIV-1 infection. Importantly, the viral protein Vpr induces the degradation of gelsolin and thus counteracts its antiviral activity. Our study provides significant and novel insights into HIV-1 virus-host interactions and furthers our understanding of the importance of Vpr in HIV-1 infection and pathogenesis.


Assuntos
Infecções por HIV , HIV-1 , Humanos , Produtos do Gene vpr do Vírus da Imunodeficiência Humana/genética , Produtos do Gene vpr do Vírus da Imunodeficiência Humana/metabolismo , Gelsolina/metabolismo , Produtos do Gene env/metabolismo , Células HEK293 , Células Mieloides/metabolismo , Antivirais/metabolismo
3.
J Virol ; 96(14): e0065222, 2022 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-35766490

RESUMO

Human mannose receptor 1 (MRC1) is a cell surface receptor expressed in macrophages and other myeloid cells that inhibits human immunodeficiency virus type 1 (HIV-1) particle release by tethering virions to producer cell membranes. HIV-1 counteracts MRC1 expression by inhibiting mrc1 transcription. Here, we investigated the mechanism of MRC1 downregulation in HIV-1-infected macrophages. We identified the myeloid cell-specific transcription factor PU.1 as critical for regulating MRC1 expression. In the course of our study, we recognized a complex interplay between HIV-1 Tat and PU.1 transcription factors: Tat upregulated HIV-1 gene expression but inhibited mrc1 transcription, whereas PU.1 inhibited HIV-1 transcription but activated MRC1 expression. Disturbing this equilibrium by silencing PU.1 resulted in increased HIV-1 gene expression and reduced MRC1 promoter activity. Our study identified PU.1 as a central player in transcriptional control, regulating a complex interplay between viral and host gene expression in HIV-infected macrophages. IMPORTANCE HIV-1 replication in primary human cells depends on the activity of virus-encoded proteins but also involves cellular factors that can either promote (viral dependency factors) or inhibit (host restriction factors) virus replication. In previous work, we identified human MRC1 as a macrophage-specific host restriction factor that inhibits the detachment of viral particles from infected cells. Here, we report that HIV-1 counteracts this effect of MRC1 by imposing a transcriptional block on cellular MRC1 gene expression. The transcriptional inhibition of the MRC1 gene is accomplished by Tat, an HIV-1 factor whose best-described function actually is the enhancement of HIV-1 gene expression. Thus, HIV-1 has evolved to use the same protein for (i) activation of its own gene expression while (ii) inhibiting expression of MRC1 and other host factors.


Assuntos
Infecções por HIV , Repetição Terminal Longa de HIV , Receptor de Manose , Regulação para Cima , Regulação Viral da Expressão Gênica , Infecções por HIV/fisiopatologia , Infecções por HIV/virologia , HIV-1/fisiologia , Humanos , Macrófagos/virologia , Receptor de Manose/genética , Regiões Promotoras Genéticas , Ativação Transcricional
4.
J Virol ; 93(16)2019 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-31167922

RESUMO

The HIV-1 capsid executes essential functions that are regulated by capsid stability and host factors. In contrast to increasing knowledge on functional roles of capsid-interacting host proteins during postentry steps, less is known about capsid stability and its impact on intracellular events. Here, using the antiviral compound PF-3450074 (PF74) as a probe for capsid function, we uncovered a novel phenotype of capsid stability that has a profound effect on innate sensing of viral DNA by the DNA sensor cGAS. A single mutation, R143A, in the capsid protein conferred resistance to high concentrations of PF74, without affecting capsid binding to PF74. A cell-free assay showed that the R143A mutant partially counteracted the capsid-destabilizing activity of PF74, pointing to capsid stabilization as a resistance mechanism for the R143A mutant. In monocytic THP-1 cells, the R143A virus, but not the wild-type virus, suppressed cGAS-dependent innate immune activation. These results suggest that capsid stabilization improves the shielding of viral DNA from innate sensing. We found that a naturally occurring transmitted founder (T/F) variant shares the same properties as the R143A mutant with respect to PF74 resistance and DNA sensing. Imaging assays revealed delayed uncoating kinetics of this T/F variant and the R143A mutant. All these phenotypes of this T/F variant were controlled by a genetic polymorphism located at the trimeric interface between capsid hexamers, thus linking these capsid-dependent properties. Overall, this work functionally connects capsid stability to innate sensing of viral DNA and reveals naturally occurring phenotypic variation in HIV-1 capsid stability.IMPORTANCE The HIV-1 capsid, which is made from individual viral capsid proteins (CA), is a target for a number of antiviral compounds, including the small-molecule inhibitor PF74. In the present study, we utilized PF74 to identify a transmitted/founder (T/F) strain that shows increased capsid stability. Interestingly, PF74-resistant variants prevented cGAS-dependent innate immune activation under a condition where the other T/F strains induced type I interferon. These observations thus reveal a new CA-specific phenotype that couples capsid stability to viral DNA recognition by cytosolic DNA sensors.


Assuntos
Capsídeo/metabolismo , DNA Viral , Infecções por HIV/metabolismo , Infecções por HIV/virologia , HIV-1/fisiologia , Interações Hospedeiro-Patógeno , Nucleotidiltransferases/metabolismo , Sequência de Aminoácidos , Fármacos Anti-HIV/farmacologia , Proteínas do Capsídeo/genética , Proteínas do Capsídeo/metabolismo , Linhagem Celular Tumoral , Resistência à Doença , Infecções por HIV/tratamento farmacológico , HIV-1/efeitos dos fármacos , Humanos , Indóis/farmacologia , Mutação , Fenilalanina/análogos & derivados , Fenilalanina/farmacologia , Estabilidade Proteica
5.
Front Microbiol ; 9: 559, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29651275

RESUMO

Influenza A viruses (IAV) are responsible for recurrent influenza epidemics and occasional devastating pandemics in humans and animals. They belong to the Orthomyxoviridae family and their genome consists of eight (-) sense viral RNA (vRNA) segments of different lengths coding for at least 11 viral proteins. A heterotrimeric polymerase complex is bound to the promoter consisting of the 13 5'-terminal and 12 3'-terminal nucleotides of each vRNA, while internal parts of the vRNAs are associated with multiple copies of the viral nucleoprotein (NP), thus forming ribonucleoproteins (vRNP). Transcription and replication of vRNAs result in viral mRNAs (vmRNAs) and complementary RNAs (cRNAs), respectively. Complementary RNAs are the exact positive copies of vRNAs; they also form ribonucleoproteins (cRNPs) and are intermediate templates in the vRNA amplification process. On the contrary, vmRNAs have a 5' cap snatched from cellular mRNAs and a 3' polyA tail, both gained by the viral polymerase complex. Hence, unlike vRNAs and cRNAs, vmRNAs do not have a terminal promoter able to recruit the viral polymerase. Furthermore, synthesis of at least two viral proteins requires vmRNA splicing. Except for extensive analysis of the viral promoter structure and function and a few, mostly bioinformatics, studies addressing the vRNA and vmRNA structure, structural studies of the influenza A vRNAs, cRNAs, and vmRNAs are still in their infancy. The recent crystal structures of the influenza polymerase heterotrimeric complex drastically improved our understanding of the replication and transcription processes. The vRNA structure has been mainly studied in vitro using RNA probing, but its structure has been very recently studied within native vRNPs using crosslinking and RNA probing coupled to next generation RNA sequencing. Concerning vmRNAs, most studies focused on the segment M and NS splice sites and several structures initially predicted by bioinformatics analysis have now been validated experimentally and their role in the viral life cycle demonstrated. This review aims to compile the structural motifs found in the different RNA classes (vRNA, cRNA, and vmRNA) of influenza viruses and their function in the viral replication cycle.

6.
J Virol ; 90(12): 5808-5823, 2016 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-27076642

RESUMO

UNLABELLED: The viral capsid of HIV-1 interacts with a number of host factors to orchestrate uncoating and regulate downstream events, such as reverse transcription, nuclear entry, and integration site targeting. PF-3450074 (PF74), an HIV-1 capsid-targeting low-molecular-weight antiviral compound, directly binds to the capsid (CA) protein at a site also utilized by host cell proteins CPSF6 and NUP153. Here, we found that the dose-response curve of PF74 is triphasic, consisting of a plateau and two inhibitory phases of different slope values, consistent with a bimodal mechanism of drug action. High PF74 concentrations yielded a steep curve with the highest slope value among different classes of known antiretrovirals, suggesting a dose-dependent, cooperative mechanism of action. CA interactions with both CPSF6 and cyclophilin A (CypA) were essential for the unique dose-response curve. A shift of the steep curve at lower drug concentrations upon blocking the CA-CypA interaction suggests a protective role for CypA against high concentrations of PF74. These findings, highlighting the unique characteristics of PF74, provide a model in which its multimodal mechanism of action of both noncooperative and cooperative inhibition by PF74 is regulated by interactions of cellular proteins with incoming viral capsids. IMPORTANCE: PF74, a novel capsid-targeting antiviral against HIV-1, shares its binding site in the viral capsid protein (CA) with the host factors CPSF6 and NUP153. This work reveals that the dose-response curve of PF74 consists of two distinct inhibitory phases that are differentially regulated by CA-interacting host proteins. PF74's potency depended on these CA-binding factors at low doses. In contrast, the antiviral activity of high PF74 concentrations was attenuated by cyclophilin A. These observations provide novel insights into both the mechanism of action of PF74 and the roles of host factors during the early steps of HIV-1 infection.


Assuntos
Fármacos Anti-HIV/farmacologia , Capsídeo/metabolismo , HIV-1/efeitos dos fármacos , Interações Hospedeiro-Patógeno , Indóis/farmacologia , Complexo de Proteínas Formadoras de Poros Nucleares/metabolismo , Fenilalanina/análogos & derivados , Fatores de Poliadenilação e Clivagem de mRNA/metabolismo , Sítios de Ligação , Capsídeo/efeitos dos fármacos , Proteínas do Capsídeo/metabolismo , Ciclofilina A/metabolismo , Ciclofilina A/farmacologia , Células HEK293 , HIV-1/fisiologia , Células HeLa , Humanos , Complexo de Proteínas Formadoras de Poros Nucleares/genética , Fenilalanina/farmacologia , Transcrição Reversa/efeitos dos fármacos , Replicação Viral/efeitos dos fármacos , Fatores de Poliadenilação e Clivagem de mRNA/deficiência , Fatores de Poliadenilação e Clivagem de mRNA/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...